Proof-reading

Check that whether the following method is correct or not.

Given
$$f(x) = \sqrt{\frac{x}{1+x^2}}$$
 , $x \ge 0$, find its

(a) optimum point(s);

(b) point of inflection.

(a) Let
$$f(x) = \sqrt{g(x)}$$
, $g(x) = \frac{x}{1+x^2}$, $x \ge 0$
 $g'(x) = \frac{(1+x^2)(1)-x(2x)}{(1+x^2)^2} = \frac{1-x^2}{(1+x^2)^2} = 0 \Rightarrow x = 1$ ($x = -1$ is rejected)
When $0 < x < 1$, $g'(x) < 0$ and when $x > 1$, $g'(x) > 0$.
By the First Derivative Test, $g(x)$ is a local max. when $x = 1$.
Local Max. of $g(x) = \frac{1}{1+1^2} = \frac{1}{2}$.
Since $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \sqrt{\frac{x}{1+x^2}} = \lim_{x \to +\infty} \sqrt{\frac{1}{x} + x} = 0$ and $f(0)=0$.
Hence, the absolute maximum of $f(x) = \sqrt{g(x)} = \sqrt{\frac{1}{2}} \approx 0.707107$ when $x = 1$.
 $\therefore f(0) = 0$ is the absolute minimum.

(b)
$$g'(x) = \frac{1-x^2}{(1+x^2)^2} = \frac{2-(1+x^2)}{(1+x^2)^2} = \frac{2}{(1+x^2)^2} - \frac{1}{1+x^2}$$

 $g''(x) = -\frac{8x}{(1+x^2)^3} + \frac{2x}{(1+x^2)^2} = \frac{-8x+2x(1+x^2)}{(1+x^2)^3} = \frac{2x(x^2-3)}{(1+x^2)^3} = \frac{$

 $\therefore x = 0, \pm \sqrt{3}$

Since $x \ge 0$, and obviously when x = 0, g(x) is not a point of inflection, $\therefore x = \sqrt{3}$. Also g''(x) changes sign when x goes through $\sqrt{3}$. Therefore when $g(\sqrt{3})$ is a point of inflection.

0

$$f(\sqrt{3}) = \sqrt{g(\sqrt{3})} = \sqrt{\frac{\sqrt{3}}{1 + (\sqrt{3})^2}} = \frac{\sqrt[4]{3}}{2}$$

$$\therefore \text{ Point of inflection is } \left(\sqrt{3}, \frac{\sqrt{3}}{2}\right).$$